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Starting from a partially ordered set of C*-algebras ~i representing algebras of 
observables of physical subsystems, we derive a topological Hausdorff space ~g 
as a candidate for some generalized "space-time" with the help of which one can 
define a net O --. ~(O), O ~ ~g, of algebras. This opens a way to define a physical 
theory without an underlying metaphysical manifold, an aspect which may be 
relevant for the unification of general relativity and quantum field theory. 

1. I N T R O D U C T I O N  

The following discussion will be in the framework of  local quantum 
physics (Haag  and Kastler, 1964; Haag,  1992). Let • be Minkowski space. 
To every region (open set with compact  closure) O ~ M there corresponds 
a C*-algebra ~ ( O ) .  The smallest C*-algebra ~q/containing all the ~ ( O )  is 
called the algebra ofquasilocal observables. The fundamental insight of  alge- 
braic quantum field theory is that the entire physical information of  a theory 
is encoded in the assignment O ~ ~ ( O ) ,  the net of  local algebras, which is 
assumed to fulfill the following axioms, which we list for later reference: 

A1. Isotony: 01 ~- 02 ~- ~ ~ ~/(01) ~- ~/(02). 
A2. Einstein causality: I f  two regions O!, O2 lie spacelike to each 

other, then the elements of  ~ ( O 1 )  commute with those of  ~(O2) ,  
i.e., [~/(O~), a'(O2)] = {0}. 

A3. Primitive causality: If the region O2 is in the causal completion 
(see below) O~' of the region O1, then M(O2)~-M(OI). 

A4. Poincard invariance: The orthochronous Poincar6 group #~+ is 
represented by automorphisms a(a. A), (a, A)~#T+, acting on M by 
�9 (~, A)(a'(O)) = M(a + AO). Here a is a translation vector and A a 
Lorentz transformation. 
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Axiom A2 expresses the usual causal structure of ~ .  If O is a subset of ~ ,  
the causal complement O' of O is the largest set of ~ whose points lie 
spacelike to all points of O. We call (O') '  = O" the causal completion of O. 
We call O causally complete if O" = O. Axiom A3 stipulates the existence 
of a dynamical law respecting the causal structure of ~ .  It corresponds to 
the hyperbolic propagation character of fields (Haag, 1992). 

The algebra d is assumed to be the mathematical image of a physical 
system and the ~ (O)  that of physical subsystems (see also Section 2). 
Self-adjoint elements of these algebras g ( O )  are assumed to detect events 
within the regions O and are considered as observables. Generally, we 
regard each A e ~ as an operation changing the states of a system. States 
are represented by positive linear functionals with norm 1 on d .  In this 
algebraic scheme space-time is assumed a priori to be a four-dimensional 
manifold. Although this metaphysical view seems to be even possible if this 
manifold is some curved space-time of a fixed gravitational background 
(e.g., Dimock, 1980), one strongly feels that one has to analyze space-time 
more critically with respect to the unification of general relativity and 
quantum theory. 

"Leibniz contended that space and time are only systems of relations. 
Although both physicists and philosophers tended more and more to take 
Leibniz's view rather than Newton's, the technique of mathematical physics 
continued to be Newtonian" (Russell, 1976, p. 295). "When we deny 
Newton's theory of absolute space, while continuing to use what we call 
points in mathematical physics, our procedure is only justified if there is a 
structural definition ofpointand (in theory) of particular points" (Russell, 
1976, p. 296), i.e., to show "the elements and the relations constituting the 
structure" (Russell, 1976, p. 194). 

We are, in the sense of Bohr, only able to define an experiment [and 
thus each A e~(O)]  in a classical manner with our common language and 
concepts of space and time. Hence, Newtonian space-time of our daily life 
is inherent in each A ~d(O) .  But we have learned, especially from relativity 
theory, that although experiments are defined in a purely Newtonian way, 
the theoretical space-time concept necessary to describe the outcomes of 
experiments is non-Newtonian. 

To get a structural definition of space-time in quantum field theory, it 
should be definable by relations between devices of operations or measure- 
ments. Actual relations like causal relations between space-time points 
may depend on actual states of the physical system. If ~ or ~/(O) is a 
well-defined set representing devices for operations or measurements, 
then all of their physical relations, including space-time, should be built 
into ~ or d(O) .  Therefore, space-time should be extractable from ~r or 
the ~g(O). 
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In the following we present a method for extracting a topological 
Hausdorff space ~r which may represent space-time, from a C*-algebra 
~r For this method the only relation we need to hold is a (strict) par- 
tial order relation between special subalgebras of zr Given an alge- 
braic structural definition of space-time ~/, then a net O---,zr is a 
purely algebraic concept with all terms having a well-defined physical 
interpretation. 

2. NETS OF ALGEBRAS BASED ON AN INTRINSICALLY 
DEFINED SPACE 

The measurable properties of a physical system depend on the set of 
measurement devices which are available and which are sensitive for that 
system. One can say (in a positivistic view) that this set is the empirical 
representative of a physical system. Therefore, one may regard the quasilo- 
cal algebra ~r as a physical system and the local algebras ~r as physical 
subsystems. 

The idea now is that it is not the assignment 0 ~ ~ ( 0 ) ,  0 a subset of  
some underlying space ~gr that is fundamental, but the identification of  
physical subsystems and their relations to each other and that Jr and the net 
0 ~ ~r are derived concepts. Let us assume that we have identified a set 
E of C*-subalgebras of a C*-algebra ~r which represent such physical 
subsystems. (For the derivation of d / t h a t  follows it is not necessary for 
the elements of E to be algebras, but let us stay in the algebraic picture 
which has been so successful until now, although finally quantum gravity 
might demand that we abolish the algebraic structure.) Let E be partially 
ordered by a relation 4 .  We leave it open whether ,~ is reflexive or 
antireflexive. Elements of E are denoted by ~,  ~1, ~t . . . . .  The expression 
~1 '~ ~2 means that ~ is a subsystem which is "essentially smaller" than 
~2. (The meaning of "essentially smaller" will become clearer in the 
example of Section 3.) 

Definition 2. I. (a) A set N ~ E is called overlapping if each finite subset 
I of N has a lower bound in E, i.e., 3~l~E: ~ ~ for all ~ I .  

(b) N is called shrinking if it is overlapping and ~ eN =~ 3~1 ~N: 

(c) A shrinking set N _ E is called maximal if it is not contained in 
any shrinking set N~ # N. 

(d) The set of all maximal shrinking sets of E is denoted by ~ and 
elements of de', also called points, by lowercase letters x, Xl, y, �9 �9  [Com- 
pare a related definition of points of a linear space with the help of sets of 
overlapping convex sets by Russell (1976), p. 299.] 
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If  ,~ is reflexive, then all sets {g~} consisting of  a single element ~ e E  
are shrinking because ~ ~ ~ .  The existence of maximal shrinking sets 
follows by Zorn's Lemma and in this case J /  is not empty. I f  ,~ is 
antireflexive, then the existence of shrinking sets is an additional property 
of E. 

if." 
Definition 2.2. We call the pair (E, ,~), or simply E, the base of a net 

(a) ~1 ~ ~2 =~ ~1- - -~2 .  
(b) ~ E  =~ 3 ~ l ~ E : ~ 1 ~ .  

Property (a) guarantees the isotony property of the net of  algebras to 
be derived and (b) the existence of shrinking sets and, therefore, .Ar ~ ~ .  
In the following we always regard E as a base of a net. Furthermore, let d 
be the smallest C*-algebra containing all elements of E. 

Definition 2.3. For a finite subset I _~ E we define O1 = {xeJ/r _ x}. 
If  I = {~}, we simply write O~. 

If  I ___ E is finite and not overlapping in E, then Oi =/2I, because in this 
case the set I cannot be contained in any maximal shrinking set x ~d/ .  

Proposition 2.4. The sets O1, I ~ E finite, form a base of  a topology 3- 
for J / ,  i.e.: 

(a) ~ '  = Ul 0 , .  
(b) nT= 1 ol, = o j  with J = (JT~ 11i. 

In particular, 3- is a Hausdorff topology for Jr 

Proof. (a) For every xe~/r there exists a finite, overlapping set 
I _~ x _~ E, and x ~  is contained in O1. 

(b) We have 

i ~ l  i = l  

where J is a finite set. 
It remains to show that 3- is a Hausdorff topology. Let x, y s J / ,  

x ~ y. If  x u y is overlapping, then x u y is shrinking. By x c (x u y) we get 
a contradiction because x already is a maximal shrinking set. Therefore, 
there exists a finite set ! ___ x u y  which is not overlapping and I n x  r ~ ,  
I n y  r ~ .  As Ic~x and Ic~y are finite sets, we conclude xsOlnx, y~O~,y, 
and O l n x n O i n y  = 0 I-- ~ .  �9 
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If  ./r has been derived with help of a base of a net (E, ~) ,  it is natural 
to associate with open sets 0 _ ~g the C*-algebras 

d ( O ) =  U ~ (1) 

Oar 0 

(algebraic closure in the C*-norm), where O~ = { x e ~ g l ~ e x  }, which we 
again want to interpret as physical subsystems. There might be reasons to 
regard also the algebras of points 

d ( x )  = N ~ ( o )  
x ~ O  

as (idealized) subsystems. By the definition (1) we get a net of "local" 
algebras 0 ~ d (O) ,  0 an open set of X4. This net does not yet fulfill all 
axioms of algebraic field theory, but the isotony property 

01 c O: c_ ~ :~ ~r ~- ~(02) 

is trivial. 

Proposition 2.5. If  there is an automorphism a on ~ with a(E) = E 
and which preserves the partial order relation ,~, then a induces a 
homeomorphism x= of ~ / /by  

x -+ ~=(x) = {~(~) l~  ~x} (2) 

The inverse of x= is defined by ~-1 = x~_~. 

Proof As ~ is an automorphism, x=(x) and x~-l(x) are again maximal 
shrinking sets and x= and r~ -I are one-to-one. For an open set Oe _ J / /one  
gets 

x ~- 1 (O~) = O~ _,(~) 

which is open for every open set O~. As the O~ form a subbase for the 
topology 3-, r= and E~--1 a r e  continuous. �9 

Given a group ~ of automorphisms ~ of the algebra M with the 
properties of Proposition 2.5, one has by (2) a "geometric" action of this 
group on ~ by the x~ and especially the following covariance property: 

Proposition 2.6. We have 

~ ( ~ ( o ) )  = ~ ( ~ ( o ) ) ,  o e ~ z  

Proof As x= is a homeomorphism, x=(O) is open if O is open. With 
x=(O~) = O=(~) one gets 

= ( ~ r  = ~ = U = ~ r  �9 
~ E  ~ e E  

O ~  ~_ 0 O=(~t) ~-- xa(O) 
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3. AN EXAMPLE 

Let us consider a net O--*~(O) of von Neumann algebras with 
identity ~ which fulfills the axioms of Section 1. This net will serve us as a 
device to define a base of a net. d is the smallest C*-algebra containing all 
~(O). For each y ~ M ,  y = (y0, y), and r ~  let ~y,r be the causal comple- 
tion of  the three-dimensional ball { x e ~ [  Ix-rl<r} in the spacelike 
hyperplane at yO, sometimes also called the diamond or double cone with 
center y and radius r. I f  the center and the radius are not important we 
simply write ~Y', ~r ~2  . . . . .  

We need some additional assumptions which are fulfilled, for example, 
for the free field. For discussions of these properties and their physical 
prerequisites and implications see the references. 

P1. Landau property (Landau, 1969). If  a'ff l , aY': _ ~ are open double 
cones, then 

~Y-lc~t~2 = ~ ~ 9~(~f1)c~(~2)  = {2112eC } (3) 

(Disjoint double cones do not have other operations in common 
than multiples of the identity ~.) 

P2. Type of  the local algebras: All 9 t ( ~ )  of  double cones ~ are 
hyperfinite factors of type III1 in the classification of  Connes 
(1982). 

P3. Split property: If  ~r and ~2  are two double cones of M, Jf~ the 
closure of  ~1 ,  then 

JY'~ c ~r" 2 ,:,, the inclusion 9t()t'l) ~ ~ ( ~ 2 )  is split (4) 

This means that there exists a type I factor X with 

~(O1) ~ ~/" c ~(O2) 

Property P2 is a result of Buchholz et al. (1987). For the following this 
excludes that the algebras ~(5u are trivial. Concerning the split property 
P3 see, for instance, Doplicher and Longo (1984) and Buchholz (1974). 
Property P1 helps us to prove the following lemma, which says that the 
assignment of  (nontrivial) algebras to double cones is one-to-one. 

Lemma 3.1. If  ~VI, 5~2 are two double cones, then 

~f~ ~ ~ 2  ~ ~ ( ~ )  r ~ ( ~ )  

Proof. Suppose that ~1 is not included in J~f2; then them is a double 
cone ~f  in ~ l  which does not intersect o~f 2. By the Landau property (3) it 
follows that the subalgebra ~ ( J l )  of ~ ( ~ 1 )  is not included in ~(~r:) .  �9 
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Definition 3.2. The set of algebras 

ER = > R} 

and the partial order relation 

the inclusion ~(Jgl) c ~ ( f 2 )  is split (5) 

define a base of a net (Ek, ~). 

As ~(3f1) '~ ~(fff2) implies ~(Jf l )  c ~(3f'2) and to every ~(~g2) there 
exists a ~(Jgl) with ~(~e'l) ~ ~(~2),  (ER, 4)  is a base of a net in the 
sense of Definition 2.2. Each (ER, 4)  defines a space JgR. 

Note that (5) reduces the partial order relation ~ between algebras to 
a topological relation between double cones. Overlapping of a set of 
algebras ~(X') means that finite intersections of the associated double 
cones contain a double cone. 

The idea to use the split property to define the partial order relation is 
taken from Fredenhagen (1992). In Bannier (1987) we originally defined 
the partial order relation ~ with the help of the translations of ~ (vector 
group ~4 with the usual topology), which are represented by automor- 
phisms of ~1, i.e., for each a eR 4 there is an automorphism a~ such that 
aa(Sl(O)) = sr + a). The time translations are denoted by a,, t ~g~. One 
can define ~ by 

there is an open neighborhood q/ 

~(~"1) ~ ~(:r r ~of the origin of ~4 such that 

/ (~(~(3F1)) ~ ~(,~2) Va~q/ 
or by 

~ there is an open neighborhood q/ 

~(~"1) ~ ~(3ff2) r ~of the origin of ~ such that 

L~,(~(oefl)) = ~(Jg2) Vt ~q/ 

In both cases one gets the same spaces ~gg as with definition (5). 
In the proof of Proposition 3.4 we shall use Helly's Theorem (Helly, 

1923; Radon, 1921), although one can prove it by the finite intersection 
property of compact sets. Helly's Theorem shows an interesting connection 
between overlapping properties of convex sets and the dimension of a 
linear space and we give it for the convenience of the reader in the 
formulation of Comfort and Gordon (1961). 

Theorem 3.3. (Helly's Theorem). Let D be an n-dimensional, real, 
normed linear space, and let ~ be a collection of compact, convex subsets 
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of D. If  every n + 1 elements of ~" have a point in common, then some 
point of  D lies in every element of  ~-. 

Proposition 3.4. Each Hausdorff space J//~ generated by (E~, ,~), 
R > 0, is homeomorphic to R 4. 

Proof. To each p ~ R 4 we assign the set 

Xp = {~(gf') ~ER [Jfp, R c :r (6) 

~p.R is the closure of ~ffp,n and we define ~ffp,0 = {P} to unify the notation, 
We shall first prove that the Xp are maximal shrinking sets in ER 

and that the mapping #a : P ~ Xp is one-to-one from R 4 into dgR. Each set 
x_u _is overlapping because for each finite set of do__uble cones ~ff, containing 
~gp, R there exists a double cone ~ 0  containing ~ffp,R and ~(J~ff0) ~ ~(o~ffi). 
As ~(o~ff0) itself is in Xp, we conclude that Xp is shrinking. Let us assume 
that Xp is not a maximal shrinking set. Then there exists an algebra 
~(g(2) CXp and x~ u { ~ ( ~ 2 ) }  should be overlapping. Let ~(o~ff~) ~xp; then 
there exists an algebra ~ ( ~ 3 ) ~ x r  with ~(~ff3)~YS(~fl) and ~(~ffa) 
YS(o~ff2). Fr__._om the last inequality it foUow___s especially that ~r = o'~ffz �9 As z(3 
contains a~('p,~, also or'2 should contain Jgr.e. This is a contradiction and xr 
is already a maximal shrinking set in ER. Ifp~, p~ e~4, p~ #p~, we can find 
double cones :r i = 1, 2,p~e~f'i, which do not simultaneously contain 
~"~,~ and ~fp~, ~. Therefore, we get x~  ~ x ~  and/~R is one-to-one. In this 
sense we have ~ 4 C  ~'[R" 

We shall prove now that the mapping #~ is in fact onto ~ '~ .  For each 
x ~ r  we define 

K x = {Y.('[~(,Yl) Ex} 

and for each g(  eKx 

A~r = {pER4[~p,R ----- Yf} 

Each A~r~r is equal to ~ p  ,_ R, which is a compact convex subset of R4. As 
x is overlapping, we have for each selection of 4 + 1 sets Ag,, .,~rieKx, 

5 

N A~i = (P ~ R41~f'p,R -- ~ff~, i = 1 . . . . .  5} # 
i ~ l  

as there is a set Jfo c n~= 1 ~"~,-, ~0  sKx, which contains at least one o~g'pm. 
By Helly's Theorem we then get 

m 

N = 

~ E K  x 

This implies that__there exists at least one Xp, R contained in all ~ ,  ~ff ~Kx. 
But then this ~ffp.R is also contained in each JtreKx because for each 
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m 

~f'eKx ther__e exists a =to I eKx with ~ t  c J r ,  as x is shrinking and :r 
contains ~:p,n. Therefore, we get x ___ xp. As x is already a maximal 
shrinking set, we conclude x --- xp. Every x co/OR is given by (6) and we can 
identify R 4 and a//n as sets. 

It remains to show that/~R is a homeomorphism. Let us denote the 
topology on ~'R defined by Proposition 2.4 by 5 R. As the mapping/x R is 
bijective, it suffices to show that the topology on R 4 induced by #n is 
identical with the usual topology on R 4. 

Every xe~/CR is of the form xp = #R(P) for some p e r  4. Let ~(ofi) ,  
ie l ,  be a finite subset of En, ~f:; = ,.~:q:,; then open sets 

O~ = {xp ev/Cn I ~ ( ~ )  exp , /e l}  

= (#R(P) e-///R Lp e ~ ,  ~p,R ~ J f i , / e l }  

form a base of 5 R .  As the sets 

/~ ~'(O, ) = {p e R4[.~f:p, R c "~:i, i e I} = N ~:q,,ri- R 
i~l 

which define the induced topology on R 4, are also a base of its usual 
topology, #R is a homeomorphism. �9 

This result is perhaps not surprising, but (E~, 4 )  is purely algebraic. 
The double cones serve only for naming or indexing subalgebras of ~r 
and saying if a relation ~ ( ~ l )  4 ~(~'Y'2) is valid. The key to the fact that 
JCR can be viewed as a four-dimensional space is hidden in the special 
overlapping properties of the ~ ( ~ ) ,  respectively, the J r ,  used in Helly's 
Theorem. 

All (Eg, 4 )  define homeomorphic spaces J//R but different nets 
0 ~ d R ( O ) ,  O e.//R. If  R---0, we have the same situation as in usual 
algebraic quantum field theory, especially the algebras of points ~'(x) are 
multiples of the identity. This is no longer the case if R > 0. Now the 
algebras sO(x) are no longer trivial. 

At the end of this example, let us take the set of all hyperfinite type 
III1 factors ~ contained in ~r as a base of a net (E, 4 )  with 4 generally 
defined by 

~1 4 ~2 # the inclusion ~ c ~2 is split. 

The ER are subsets of E and the partial order relations on ER are 
restrictions of that of E. in this case we get the interesting property that all 
elements oc of the automorphism group Aut(~r act by x~ geometrically on 
the associated Hausdorff space ..r162 which is essentially larger than vg R. 
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4. CAUSAL AND DYNAMICAL STRUCTURES 

Usually space-time is modeled by a C~-manifold and a Lorentz 
metric. In the following we want to discuss the possibility of modeling 
space-time structures on ~/l, especially causal and dynamical structures, 
without using differential geometrical methods. In Barmier (1987, 1988) we 
associated with each Klein-Gordon equation 

( [~g - m2)~g - 0, ge~ 

where g is an element of the set ~ of all globally hyperbolic Lorentz metrics 
on R 4, a two-sided, norm-closed maximal ideal Jg in a C*-algebra d 
defined by a net O ~ d(O), O c R 4. In this net one can show that the 
following result holds: 

Theorem 4.L (Bannier, 1988, Theorem 2.1). (a) If two regions O1 and 
02 of •4 lie spacelike to each other with respect to g, then 

[d(Ol), ~r - Jg. 

(b) If O1, 02 c R 4 are two regions and O: is in the causal completion 
O gg (defined in analogy to O" in the introduction) of O1 with respect to g, 
then 

d(O2) -= ~r +Jg  

These statements are generalizations of Axioms A2 and A3. Motivated 
by this theorem, one can try to define causal and dynamical structures with 
the help of special ideals [which we shall define here in a slightly different 
way than in Bannier (1987, 1988)]. 

Definition 4.2. Let (E, 4)  be a base of a net, ~ the associated 
Hausdorff space, 0 ~ ~r the associated net of algebras, ~r the quasi- 
local algebra generated by this net, and J a two-sided, norm-closed ideal 
of d .  

(a) Two points p, qe~r are defined to be causally independent with 
respect to J (in short: w.r.t. J )  if there are open sets O1, O2 ~ ~r pe01,  
q e 02, with 

[~r ~r - or (7) 

J is called causal if there exist causally independent points w.r.t. J in ~/4. 
(b) If q/is any subset of Jr the causal complement ql "~ of q/w.r.t. J 

is the largest subset of ~t' whose points are causally independent w.r.t. J 
to all points of q/. We call (q/J')J = q/a,a, the causal completion of q/w.r.t. 
J .  The set q/ is  called causally complete w.r.t, or if #ta'~ = q/. 
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(c) Let J be a causal ideal, and 0 2 in the causal completion of  the 
open set O~ w . r . t . J .  We call J hyperbolic if 

d ( o 2 )  = a~(o , )  + J 

and if for every set O~ which is causally complete w.r.t. J there is an 
open set 02 # O~ with 02 J J  = O~ (i.e., the structure should not be trivial). 

The algebra ag of the example in Section 3 possesses only the trivial 
ideal {0}. For  the net O -+ adR(O) we recover the usual causal structure if 
R =0 .  But if R > 0 ,  then each x~d /R  has an open neighborhood 
O c d/R such that no point of  the neighborhood is causally independent 
to x w.r.t. {0}. This net can perhaps be viewed as a theory with fimited 
resolution of the measurements. 

In order for a net to have well-defined causal and dynamical struc- 
tures, d should possess hyperbolic ideals. As said in Barmier (1988), the 
above structures defined by ideals presumably are not the right structures 
for quantum gravity, but at the most an approximation, as they allow 
states that mix different causal structures. One can use the above defini- 
tions (a) and (c) as axioms for such a theory. For  quantum gravity one 
would expect that causal and dynamical structures would depend directly 
on single states. 

For  all states co which fulfill co(J) = 0 we may reformulate (7) as 

co([~(Ol), ~r = {0} 

and a causal structure could have been defined by those sets of states 
which annihilate the same ideal. Therefore, we have reached at least a 
structure which depends on sets of states. 

For  d /  we have defined the J - t o p o l o g y  (compare Proposition 2.4). 
This is a topology which does not depend on states. The definition of 
causal independence w.r.t, an ideal opens the possibility to define a kind 
of  Alexandrov topology on rid. In classical general relativity the Alexan- 
drov topology is defined by a base consisting of sets which are intersec- 
tions of the chronological past and chronological future of two points 
(e.g., Hawking and Ellis, 1973, p. 196). Now, for any two elements x, y of 
d / w h i c h  are not causally independent w.r.t, an ideal J let O(x, y)~'~" be 
the J - -open  kernel of {x, y}JJ .  If  the sets O(x, y)J~" are a covering of  d / ,  
then they can be regarded as a subbase for a topology of  dr which we 
shall denote J - topology .  In this way it is possible for a causal ideal J 
[respectively the states which fulfill c o ( J ) =  0] to define its own physical 
topology. 



1808 Banuier 

5. COMMENTS 

The distinguished role classical space-time plays in every formulation 
of quantum field theory seems to be the source of  much trouble and also 
the main obstacle in incorporating gravity into it. A base of a net (E, ,~) 
opens the possibility to define a Hausdorff space dr and a physical theory 
by a net O ~ ,~r O e,/r completely without a presupposed metaphysi- 
cal space-time. To free the definition of a theory from an underlying space 
might be a necessary step towards quantum gravity. 

But there are still serious problems concerning this idea. Therefore, we 
want to pose some questions and discuss some ideas which should motivate 
further research. 

Presumably, one can characterize a physical theory completely by a 
base of a net and one can view the base itself as the essential physical 
structure, as J / a n d  the net O ~ ~r are derived concepts. But what are 
the criteria that select a base of a net? One can imagine many pathological 
choices. 

One question in this context is, by which criteria does one regard a 
C*-algebra as a physical subsystem? Is it one which refers to a single 
algebra or is there only an implicit definition of the concept subsystem by 
the selection of  a whole base of a net? The assumption that the algebra of  
a subsystem has to be a hyperfinite factor of type III1 is not sufficient. But 
the type might be one selection criterion. 

It seems to us that one has to select not single algebras but the whole 
base (E, ,~). Given a C*-algebra ~r as in the example of Section 3, there 
are many bases for nets. One can regard different bases as equivalent if they 
define homeomorphic Hausdorff spaces J and isomorphic nets O ~ ~(O).  
There are many equivalent classes. Which class is physical? Or, are all these 
classes only different views onto the physical system represented by the 
algebra d ?  Are those bases physical which define a four-dimensional space 
with a well-defined causal structure? Which properties of a net guarantee 
this? 

We want to state some criteria similar to that in the example of 
Section 3 which may be helpful to select a base (E, ,~). Let ~/, #tl, ~t2eE; 
then: 

1. # ~ t c ~ 2 r  *~ e <:~ ~ l ,  ~2 overlapping. 
2. All ~ are hyperfinite factors of type III~. 
3. ~t~ ,~ #t 2 ,~- the inclusion ~1 c ~/2 is split. 

is the center of ~r One can regard #tl and ~t 2 as algebras sO(Oat1) and 
~r of the associated net on Jr'. If ~ c ~ t 2 r  r, then nontrivial 
elements A r ~ of ~r 1) are local in the sense that they are not contained 
in the algebra ~r ) and vice versa. 
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In the example in Section 3 the spaces dCR are four-dimensional. This 
is connected with the overlapping properties of E. If one wants to recover 
usual theories with a four-dimensional space, E should have the 4 + 1 
overlapping property, i.e., if any 4 + 1 elements of a subset x of E are 
overlapping, then x should be overlapping. Is this situation transferable to 
quantum gravity? 

The definition of ~/  fixes only topological properties. We have in 
addition defined causal and state-dependent topological structures in Sec- 
tion 4 with the help of ideals. How is it possible to define metrical relations 
between points of J/C? One idea is that perhaps correlations between 
measurements will help to do this. 

We hope that the presented method of defining a theory by a base of 
a net (E, 4)  will be confirmed by more examples and that the questions 
above will find answers. 
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